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I. INTRODUCTION

The current investigation of experimental and real sys-
tems often allows the parallel recording of time series, both
in experiments and in the monitoring of a wide number of
physical, biological, and social systems. The result of this
scientific and technological achievement is that the number
of multivariate time series describing an experiment, or
monitoring a system, is constantly increasing. A natural in-
strument in the investigation of a multivariate time series is
the correlation matrix. In the case of Gaussian multivariate
distributions, the matrix is said to belong to the Wishart dis-
tribution �1�. The study of the properties of the correlation
matrix has a direct relevance in the investigation of mesos-
copic physical systems �2�, high-energy physics �3�, informa-
tion theory and communication �4–6�, physiological data
�7,8�, investigation of microarray data in biological systems
�9–11� and econophysics �12–18�.

The extraction of information from a multivariate time
series is therefore a central issue in many scientific investi-
gations. Several classical methods have been introduced to
this end, ranging from principal component analysis to clus-
tering methods �19,20�. Multivariate analysis methods are
designed to extract the information both about the number of
main factors characterizing the time dynamics of the inves-
tigated system and the composition of the groups �clusters�
in which the system is intrinsically organized. Empirical
models describing the dynamics of a system, in terms of a
finite number of factors, are termed factor models �11,19,21�.

Any real experiment or monitoring of a real system is
performed by obtaining a finite sample of T records for each
variable. The finiteness of the number of sampled records
implies that the measured quantities in the analysis of the
system behavior present an unavoidable degree of stastitical
uncertainty. This fact has been recently expressed as the term
“noise dressing” �12�. In the following, we use this term with
the meaning of statistical uncertainty due to a finite value of
the number of records T of the time series under investiga-
tion. In this paper, by using concepts and tools of the random
matrix theory �22�, we explicitly determine the amount of
noise dressing of the eigenvalue spectrum of the correlation
matrix of a large system which is described by a factor
model and monitored in time by a large number of records.

The paper is organized as follows: In Sec. II, we provide
a definition of the class of factor models we investigated and
discuss the scientific questions answered in our paper. In Sec.
III, we briefly recall some key aspects of the random matrix
theory approach to the modeling of the spectral density of
correlation matrix eigenvalues. Section IV presents the re-
sults obtained for a generic class of factor models driven in
time, whereas Sec. V considers the results obtained for a
factor model with a sinusoidal time dependence. Section VI
briefly summarizes our conclusions. Some technical aspects
are discussed in detail in two appendices.

II. OUTLINE OF THE PROBLEM

In this section, we first define the class of factor models
we considered and explicitly state the scientific questions
answered.

A. Factor models

The simplest and more widespread models of multivariate
time series are factor models. In these models, the dynamics
of each variable are the linear combination of a given num-
ber of factors plus a noise term. A more general multifactor
model for N variables xi�t� �i=1,… ,N� can be written as

xi�t� = �
j=1

K

�i
�j�f j�t� + �i

�0��i�t� . �1�

In this equation, K is the number of factors f j�t� ,�i
�j� is a

constant describing the weight of factor j in explaining the
dynamics of the variable xi�t�, and �i�t� is a Gaussian zero-
mean noise term with unit variance. The coefficients of the
linear combination and the intensity of the noise terms are
specific to each variable and assumed, for simplicity, to be
time independent. Examples of such models are the Capital
Asset Pricing Model �one factor� and the Arbitrage Pricing
Theory �multifactor�. Both models are widespread in the fi-
nancial literature �21�. In Eq. �1�, we assume that the factors
are uncorrelated with each other, i.e., �f i�t�f j�t��=�ij, where
the symbol �…� indicates an average in time. Also, the noise
terms are uncorrelated with each other and with the factors,
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i.e., ��i�t�� j�t��=�ij and �f i�t�� j�t��=0. Since, in the rest of
this paper, we are interested in studying the linear correlation
coefficients, we assume that all the variables xi have zero-
mean and unit variance without loss of generality. These as-
sumptions fix the value �i

�0� through the relation ��i
�0��2=1

−� j��i
�j��2.

Another class of factor models we considered describes
the dynamics of the variables driven by one or more sinu-
soidal signals of a given frequency, with each variable char-
acterized by a different phase. This kind of model has been
recently applied to gene expression analysis monitored by
microarray data during the cell cycle �9–11�. In this second
case, variables follow a common factor which is sinusoidal
in time.

B. Noise dressing

Given a set of N time series each recorded for a number T
of records, one could ask the question of whether a factor
model of the type of Eq. �1� can be used to describe the
dynamics of the N variables. In statistics, there are two
classes of questions that can be posed: �i� Given a factor
model of Eq. �1� with a given number K of factors and with
� parameter known precisely or statistically �i.e., what is
known is the probability distribution from which the �s are
drawn�, can we perform a statistical test of the hypothesis
that the empirical data are well described by the model? �ii�
What is the “best” choice of the parameters �� and number of
factors K� that describe the data? The two problems are
known as hypothesis testing and parameter estimation, re-
spectively. In this paper, we address only the first question.
In most of the hypothesis testing problems, one of the major
difficulties of the test comes from the finiteness of the data.
In any real experiment, one can record a finite number of
data �NT in our case� and the unavoidable statistical fluctua-
tions lead to measured quantities which are different from
the ones expected from the model. For a given model, the
estimate of a parameter obtained from a sample of finite size
T is distributed according to a probability distribution whose
dispersion �e.g., standard deviation� tends to zero for T→�.
For example, the sample mean of an independent identically
distributed set of T variables is asymptotically Gaussian dis-
tributed around the true mean value and with a standard de-
viation proportional to 1/�T.

In the case of a factor model of Eq. �1�, one has to choose
the parameters to be estimated. We are interested in the cor-
relation matrix of the variables xi. The correlation coefficient
between two variables xi and xj is defined as

Cij 	
�xixj� − �xi��xj�

���xi
2� − �xi�2���xj

2� − �xj�2�
, �2�

where again the symbol �…� indicates an average in time.
The correlation matrix C is the N�N symmetric matrix
whose Cij element is the linear correlation coefficient be-
tween the pair of variables xi and xj. Important properties of
the correlation matrix are contained in its eigenvalue spec-
trum. One of the most important multivariate techniques,
known as the principal component analysis �19� �also known

as singular value decomposition or Karhunen–Loeve trans-
form�, is based on the analysis of the eigenvalue spectrum.
We make use of asymptotic methods that are rigorously valid
in the limit N→�, when the number of eigenvalues of the
correlation matrix becomes infinite. In this sense, it is useful
to introduce the spectral density ���� which is a continuous
function describing the eigenvalues distribution. For a matrix
having eigenvalues �n, �n=1,… ,N�, the spectral density is

���� = �
n=1

N

��� − �n� , �3�

where ��x� is the Dirac delta function. This quantity is nor-
malized as 
0

�����d�=N.
The purpose of this paper is twofold. First, we study the

problem of calculating the eigenvalue spectrum of a factor
model described by Eq. �1�. This is done by making assump-
tion on the statistical properties of the parameters � describ-
ing the model. The second purpose of the paper is the quan-
tification of the statistical uncertainty of the spectral density
of the correlation matrix of a factor model described by Eq.
�1� when the xi variables are measured in a finite time inter-
val of T records. This quantification is useful for testing the
hypothesis that real data under investigation are well de-
scribed by the considered model. In order to solve this prob-
lem we make use of the Random Matrix Theory �RMT� �22�.
By considering the assumptions needed to use asymptotic
methods of the RMT, most of the results we derive are valid
in the limit of N→� and T→�, even though we have veri-
fied that several of them are very good also for finite large
matrices.

The spectrum of a factor model is in general composed of
a set of large eigenvalues describing the behavior of the fac-
tors �the “signal”� and another set of small eigenvalues de-
scribing the effect of the noise terms �the “noise”�. Most of
the applications of the RMT to correlation matrices have
focused on the quantification of the noise dressing in the
noise part of the spectrum. This has been done either for
uncorrelated variables or for correlated variables with the
underlying assumption that the variables are homogeneous
with respect to the signal. On the contrary, in this paper, we
present a method which; �i� Allows one to compute the effect
of noise dressing on the part of the spectral density describ-
ing the factors, i.e., the signal, and �ii� shows that the hetero-
geneity of the variables with respect to the factors �the �i

�j� in
Eq. �1�� also changes the properties of the noise part of the
spectrum.

III. RANDOM MATRIX APPROACH

The application of the RMT to the noise dressing of cor-
relation matrices has recently been addressed �18,23–25� and
applied to the study of financial correlation matrices
�12–15,17�. The method to obtain the spectral density can be
summarized as follows �23�. The N�N correlation matrix
can be thought as the product MTM, where MT is the N
�T matrix containing the original data xi�t� from which the
mean is subtracted and the result is divided by the standard
deviation. It is then useful to introduce the resolvent
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G�z� = Tr��z − MTM�−1� = �
n=1

N
1

z − �n
, �4�

where G�z� is a complex function. The resolvent is related to
the spectral density through

���� =
1

�
lim
�→0

Im�G�� − i��� . �5�

The resolvent can be rewritten as

G�z� = �zln det�zIN − C� . �6�

where IN is the N�N identity matrix. These expressions
hold for the correlation matrix of the model. One can imag-
ine that the elements of the matrix M are equal to the sum of
an “undressed” part M0 plus a random part N describing the
effect of the noise �finiteness of the sample�. In order to find
the effect of noise dressing on the spectral density, one has to
average the resolvent G�z� over the probability distribution of
the matrix M, i.e.,

G�z� = �G�z��ens, �7�

where the symbol �…�ens indicates an average over the prob-
ability distribution of the matrix M. This averaging proce-
dure can be made by making use of the replica trick and by
performing a saddle point approximation �see �23� for de-
tails�.

IV. MODELS WITH TIME UNCORRELATED FACTORS

Let us first consider the general case of a factor model in
which the factors f j�t� are stochastic variables uncorrelated
in time, i.e., �f i�t�f j�t���=�ij�tt�. In this case, we have also
that �xi�t�xj�t���ens=Cij�tt�. By making use of Eq. �25� of Ref.
�23�, we direcly show that the equation for the ensemble
averaged resolvent is

G�z� =
T

z − �
i=1

N
�i

T − �iG�z�

. �8�

In order to find the effect of noise dressing on the spectral
density of this kind of factor model, one needs to; �i� Find
the model spectrum �1 ,… ,�N of the factor model of Eq. �1�,
�ii� solve the N+1th degree algebraic Eq. �8�, and �iii� make
use of Eq. �5� with G�z� in place of G�z� to find ����. The
major analytical or computational difficulties are the deter-
mination of the spectrum and the solution of Eq. �8�. Here-
after, we introduce a scheme able to solve this problem in
many cases of interest. In the following paragraphs, we con-
sider factor models of increasing complexity.

A. Zero-factor model

In the absence of any factor, we have a zero-factor model.
In the zero-factor model, each variable is described only by a
random Gaussian variable �i�t�. The model correlation matrix
is the N�N identity matrix IN, thus all the eigenvalues are

equal to 1 and the spectral density is ����=N���−1�. The
noise dressing of the spectrum of the sample correlation ma-
trix has been derived in �23,24�. We report here the results
for completeness and for comparison with the results of more
complicated models. Moreover, in this paragraph, we assume
that all the xi variables have zero mean and variance 	2. The
reason for considering the more general case of 	�1 here is
that in the following we will need this result. In the limit
T , N→�, with a fixed ratio Q=T /N
1, the eigenvalue
spectral density of the correlation matrix is given by

���� =
T

2�	2�
���max − ���� − �min� , �9�

where �min
max=	2�1+1/Q±2�1/Q�. The spectral density is

different from zero in the interval ��min,�max�.

B. One-factor model

As a first application of this method, we consider a one-
factor model in which the dynamics of each variable are
controlled by a single factor. The equations describing the
one-factor model are given by

xi�t� = �i f�t� + �i
�0��i�t� , �10�

i.e., Eq. �1� with K=1. The parameter �i
2 gives the fraction of

variance explained by the common factor f�t�. The model
describes the situation when the N variables are essentially
controlled by a common factor describing a weighted mean.
This type of model is, for example, consistent with the Capi-
tal Asset Pricing Model of stock market behavior.

We directly show that the correlation coefficient between
variable i and j described by Eq. �10� is Cij =�i� j. The cor-
relation matrix of the one-factor model can therefore be writ-
ten as C=A+bb+, where A=diag�1−�i

2� is a diagonal N
�N matrix and b+= ��1 ,… ,�N� is a row vector. The charac-
teristic equation of C can be calculated by using the
Sherman–Morrison formula �26�,

det�A + bb+� = det A�1 + b+A−1b� , �11�

and the result is

det�C − IN�� = �
i=1

N

�1 − �i
2 − ���1 + �

i=1

N
�i

2

1 − �i
2 − �


 = 0.

�12�

In the following, we distinguish the case when all the �i are
the same �degenerate case� from the case when the �i are
extracted from some known probability distribution �nonde-
generate case�. We will show that the spectral properties of
the two types of models are quite different.

1. Degenerate model

In the case of a degenerate one-factor model, i.e., when
�i=� for all values of i, the characteristic equation �12� can
be solved and the spectrum is composed by a large eigen-
value �1=1+ �N−1��2�N�2 and N−1 degenerates eigenval-
ues �0=1−�2 �17�.
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Once we have the spectrum of the model, we turn into the
solution of Eq. �8� in order to find the related noise dressed
spectrum. Equation �8� for the resolvent becomes a third-
degree algebraic equation

z�0�1G3�z� + �− Tz�0 − Tz�1 + N�0�1 − T�0�1�G2�z�

+ �T2z + T�0 − NT�0 + T2�0 − T�1 + T2�1�G�z� − T3 = 0.

�13�

The spectral density can be obtained analytically from Eq.
�13�, even if the expression is quite long. As expected, the
spectral density is different from zero in two intervals, one
for the N−1 small eigenvalues and one for the large eigen-
value �1. Numerical calculations and analytical consider-
ations show that the low part of the spectrum is well fitted by
the functional form of Eq. �9�. The width of the two intervals
scale with the parameter of the model as �0��1−�2��N /T
and �1�N�2 /�T, where �0��1� is the width of the low
�high� part of the spectrum. Figure 1 shows the comparison
of theoretical prediction and numerical simulations of a de-
generate one-factor model. The agreement is very good in
the whole range of eigenvalues. It is worth noting that such
an agreement is obtained also when T�N. Figure 1 also
shows the spectrum of the model ����= �N−1����−�0�
+���−�1� as vertical lines.

Finally, it is worth mentioning that for the degenerate one-
factor model, one can obtain the functional dependence of
the low part of the spectrum in a simpler way. A reasonable
idea �12� is that the components of the correlation matrix
which are orthogonal to the eigenspace associated with the
largest eigenvalue are described by pure noise. This idea
amounts to subtracting the contribution of �1 from the vari-
ance of the variables. In other words, one could use the equa-
tion of the zero-factor model, Eq. �9�, with 	2=1−�1 /N. The
corresponding spectral density ���� is essentially indistin-
guishable from the low part of the exact result obtained from
Eq. �13� and, for this reason, we do not show the correspond-
ing result in Fig. 1. On the other hand, our method is able to
give information on the distribution of the highest eigenvalue

�1. It is worth noting that this last information cannot be
obtained by using the simpler approximate approach dis-
cussed above.

2. Nondegenerate model

We come now to the more complicated case of a nonde-
generate one-factor model. In this case, we suppose that the
� parameters are drawn from a known probability distribu-
tion P��i�. In order to find the spectrum, one should solve
Eq. �12� for all the eigenvalues and then solve the �N+1�th
degree polynomial of Eq. �8�. This task is too complicated
even numerically. We are not able to solve Eq. �12� in the
nondegenerate case, but we are able to provide an approxi-
mate form of the spectrum when N is large. In the nondegen-
erate case, we can still expect a spectral density composed by
a large eigenvalue and N−1 small eigenvalues. The large
eigenvalue can be obtained by equating to zero the term in
square brackets in Eq. �12�. In fact, since the largest eigen-
value is much larger than 1−�i

2 for any i, we can approxi-
mate the term in the square bracket as ��i

2 /�1�1, i.e., �1
��i=1

N �i
2=N��i

2�par, where the symbol �…�par indicates an av-
erage over the probability distribution P��i� of the � param-
eters. In order to have insight into the spectral density for the
other N−1 we make the ansatz that the distribution of �i is
given by P���= P��i�d�i /d� where �i=�1−�. The idea be-
hind this ansatz is that the relation between eigenvalues and
�i is the same as in the degenerate case. For example, if �i is
distributed uniformly in a subinterval �m−d ,m+d� of �0, 1�,
the distribution of the N−1 eigenvalues is given by P���
= �4d�−1�1−��−1/2. Another case of interest for the following
is when �i is distributed exponentially P��i�
exp�−�i / �̄�
with 0��i�1. In this case, the distribution of the N−1 ei-

genvalues is proportional to exp�−�1−�� �̄ ��1−��−1/2. Note
that under our ansatz, the low part of the spectrum is
bounded from above by the value �=1. In Fig. 2, we show
the low part of the eigenvalue spectral density of a one-factor
model where the �i are distributed exponentially. The line is
the theoretical prediction based on our ansatz. The agreement
between data and the ansatz is quite good.

FIG. 1. Spectral density of a degenerate one-factor model. The
gray areas are the average over 1000 numerical simulations of a
one-factor model of N=100 variables for T=500 time steps. The
value of � is 0.25. The dashed line is the theoretical prediction and
the vertical lines indicate the spectrum of the model.

FIG. 2. The low part of the spectrum of the correlation matrix of
a nondegenerate one-factor model �circle�. In this case, N=2000
and the �i are extracted from an exponential distribution with �̄
=0.25. The continuous line is the prediction based on the ansatz
discussed in the text.
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Once we have determined the distribution of small eigen-
values, we turn to the determination of the noise dressing.
The sum in the denominator of Eq. �8� is split in a term for
�1 plus a sum over the remaining N−1 small eigenvalues.
This last term can be computed as N−1 times the average of
� / �T−�G�z�� over P��� introduced in our ansatz. In other
words, Eq. �8� for the resolvent becomes

G�z� =
T

z −
�1

T − �1G�z�
− �N − 1�� �i

T − �iG�z��par

, �14�

where �1�1+ �N−1���i
2�par. In general, the average term in

Eq. �14� is not a rational function and, therefore, Eq. �14�
cannot be reduced to an algebraic equation in G. Thus the
equation for G�z� is no more algebraic, but it becomes in
general trascendental. In order to solve the complex tran-
scendental Eq. �14� we introduce a simple strategy. The av-
erage term in Eq. �14� depends typically on the dispersion of
the P��i� at the second order. Therefore, the low part of the
spectrum of a nondegenerate one-factor model with a small
dispersion in �i should not be very different from a degener-
ate one-factor model with �eff=���i

2�par. We can therefore
use the value of the resolvent of this effective degenerate one
factor model as the starting point for the numerical search of
the solution of Eq. �14�. Quite surprisingly, this method also
works well when the dispersion of the �i is high.

As an example, we observe that when �i is distributed
uniformly in a subinterval �m−d ,m+d� of �0,1� the average
term in Eq. �14� is

� �i

T − �iG
�

par
= −

1

G
+

T

2d G3/2�G − T

� �arctanh��G�m − d�
�G − T



− arctanh��G�m + d�

�G − T

� , �15�

and �1=1+ �N−1��m2+ d2

3
�. For each value of z, we solve the

trascendental Eq. �14� for G�z� and by taking its imaginary
part �see Eq. �5��, we find ���=z�.

In Fig. 3, we show the low part of the spectrum for a
one-factor model in which �i is uniformly distributed be-
tween 0 and 1. We see that the agreement between the theory
and the simulations is very good.

It is worth noting that in the general case of a nondegen-
erate one-factor model, the low part of the spectrum is not
compatible with the form of Eq. �9�. For example, let us
consider the nondegenerate one-factor model with �i uni-
formly distributed between 0 and 1 in which 	2=1−�1 /N
=0.667. For this model, the low part of the spectral density
predicted by the adjusted zero-factor model is shown in Fig.
3 as a dotted line. It is evident that the adjusted zero-factor
model is unable to describe the simulation data, whereas the
theory based on our approach fits very well the simulations.
Specifically the adjusted zero factor model overestimates
�underestimates� the lower �upper� edge of the low part of
the spectral density. Suppose that one wants to compare an
empirical eigenvalue spectrum with the spectral density of a
one-factor model computed by using the adjusted zero-factor
model. Figure 3 shows that an eigenvalue slightly larger than
the upper bound of the spectral density of the adjusted zero
factor model would erroneously be interpreted as a signal
eigenvalue not explained by the one-factor model. The full
theory of noise dressing of one-factor model developed here
shows that a distribution in the �i parameters gives a larger
interval of predicted noise eigenvalues.

The inset of Fig. 3 shows the comparison between the
spectrum of the model expected for T→� and the spectrum
predicted by our method for a realization of the nondegener-
ate one-factor model with finite T. In the low part of the
spectrum, the difference between the two curves is quite sig-
nificant. Specifically, the model spectrum is bounded from
above by �=1 and in it diverges at this value. On the other
hand, when the time series is finite it is possible to observe
eigenvalues larger than 1 in the low part of the spectrum.
This example shows the importance of a careful character-
ization of the effect of finite values of T on the shape of
eigenvalue spectrum.

A similar good agreement is observed for exponentially
distributed �i. If �i is distributed exponentially, P��i�

exp�−�i / �̄� in 0��i�1, the average term becomes

� �i

T − �iG�z��par
= �e−�G�z�−T/�G�z��̄�− 2e�G�z�−T/�G�z��̄�− 1 + e1/�̄��G�z��̄G�z� − T + e1/�̄T Ei�− 1 +

�G�z� − T
�G�z�
�̄

�
+ e2�G�z�−T/�G�z��̄�− Ei�−

1 +
�G�z� − T

�G�z�
�̄

� + Ei�−
�G�z� − T
�G�1z��̄

�� − Ei��G�z� − T
�G�z��̄

����
�2�− 1 + e1/�̄�G3/2�z��̄�G�z� − T� , �16�
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where Ei�x� is the exponential integral function.
The largest eigenvalue in Eq. �14� is in this case

�1 = 1 +
�− 1 − 2�̄ + 2�− 1 + ee1/�̄��̄2��− 1 + N�

− 1 + e1/�̄ . �17�

C. Multifactor models

The results obtained for the one-factor model can be ex-
tended to multifactor models. When the factors are stochastic
and uncorrelated to each other, the structure of the correla-
tion matrix is given by the composition of the groups of
variables correspondent to the factors. To be more precise,
we define a group of variables as Subset A of the N variables
xi that are influenced in their dynamics by a factor f j�t�, i.e.,
�i

�j��0 for xi�A and �i
�j�=0 otherwise. The existence of

groups of variables does not in general imply that each vari-
able is determined only by one factor, i.e., that each variable
belongs only to one group. In fact, groups can partially over-
lap, or a group can be a subset of a larger group. In the
following, we consider two classes of multifactor models,
that can be relevant as a first approximation for several ap-
plications. In the first class �termed block model�, each vari-
able belongs to one and only one group, i.e., the groups are a
partition of the set of variables. The spectral properties of
this class of models has been previously studied in Ref. �27�
in the context of financial markets. In the second class
�termed the hierarchical model�, there is a hierarchy of fac-
tors composed by H layers. More specifically, there is a com-
mon factor influencing all of the variables, then a second
layer composed by a set of nonoverlapping groups that par-
tition the set of variables, then a third layer in which each

group of the second layer is partitioned in nonoverlapping
groups and so on until the layer H. The noise dressing of the
spectral density of hierarchical models has not been studied
in the literature.

1. Block models

The simplest case is when each variable belongs to one
and only one group, i.e., its dynamics is determined by only
one factor and by the idiosyncratic noise. There are K groups
each composed by n1 ,n2 ,…nK variables such that n1+n2
+…+nK=N. In this case, the correlation matrix of the model
is block diagonal. The correlation coefficient between vari-
ables belonging to different groups is zero, while, when the
variables i and j belong to the same group k, the correlation
coefficient is �i

�k�� j
�k�. The spectral density of this kind of

models is simply given by the superposition of the spectral
densities of K one-factor models. For example, if the model
is degenerate, i.e., for each group �i

�k�	��k� does not depend
on i, the spectrum is composed by K large eigenvalues 1
− �nj −1����j��2 �j=1,… ,K� and N−K small eigenvalues 1
− ���j��2 each with degeneracy nj −1 �j=1,… ,K�.

The noise dressing of this spectrum follows directly from
Eq. �8� in which the number of distinct eigenvalues is 2K.
The equation for G�z� is therefore an algebraic equation of
degree 2K+1.

When the model is nondegenerate and the probability dis-
tributions of �i

�k� are given, one can solve the nondegenerate
case by using the same arguments of the onefactor model.
Clearly, the computational task increases with the number of
factors.

2. Hierarchical models

An interesting generalization of multifactor models occurs
when there is a hierarchical overlap between different groups
described above. To give a concrete example, let us consider
a portfolio of stocks. As a first approximation, we can con-
sider the portfolio as composed of a large group following a
common factor, e.g., the market factor in the Capital Asset
Pricing Model, and a certain number of groups homogeneous
in economic activity following a sectorial factor, such as, for
example, the oil companies or the technological stocks. In
this case, the composition of the groups induces a hierarchi-
cal structure to the correlation matrix.

We present here a simple example in which the N vari-
ables follow a common factor with a constant �. Moreover,
the set of variables is divided in two groups. There are n1
variables following the first subfactor with constant �1 and
n2=N−n1 variables following the second subfactor with con-
stant �2. Therefore, the equation of the model is

xi�t� = �f�t� + �i
�1�f1�t� + �i

�2�f2�t� + �i
�0��i�t� , �18�

where �i
�1�=�1 for i=1,… ,n1 and �i

�1�=0 for i=n1

+1 ,… ,N. Analogously �i
�2�=0 for i=1,… ,n1 and �i

�2�=�2
for i=n1+1 ,… ,N.

The correlation matrix of this model is a block matrix

FIG. 3. Low part of the spectral density of a one-factor model in
which �i is distributed uniformly between 0 and 1. We performed
1000 numerical simulations of a one-factor model of N=100 vari-
ables for T=500 time steps. The dashed line is the theoretical result
obtained through the theory developed in the text. The dotted line is
the spectral density predicted by assuming that the components of
the correlation matrix—which are orthogonal to the eigenspace as-
sociated with the largest eigenvalue—are described by statistical
fluctuations and are described by Eq. �9�. The inset shows the model
spectrum �continuous lines� and the noise dressed �dashed line�
spectral densities. The vertical line indicates the largest eigenvalue
of the spectrum of the model.
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C =�
1 … �2 + �1

2 �2 … �2

… … … … … …
�2 + �1

2 … 1 �2 … �2

�2 … �2 1 … �2 + �2
2

… … … … … …
�2 … �2 �2 + �2

2 … 1

� .

�19�

The spectrum of this matrix is composed by two large
eigenvalues given by

�± =
1

2
�2 + �1

2�n1 − 1� + �2
2�n2 − 1� + �2�n1 + n2 − 2�

± �A2 + �4�n1 + n2�2 + 2A�2�n1 − n2�� , �20�

where A= ��1
2�n1−1�−�2

2�n2−1�� and n1−1 eigenvalues
equal to �10	1−�2−�1

2 and n2−1 eigenvalues equal to �20
	1−�2−�2

2. The derivation of Eq. �20� and the general ap-
proach that can be used to calculate the spectrum of a more
complicated hierarchical model are given in Appendix A.

Again by making use of Eq. �8�, it is possible to find the
effect of noise dressing by solving the corresponding fifth
degree algebraic equation

− T5 + G�z��T4z + T3�10 − n1T3�10 + T4�10 + T3�20 − n2T3�20 + T4�20 − T3�− + T4�− − T3�+ + T4�+� + G2�z��− T3z�10 − T3z�20

− 2T2�10�20 + n1T2�10�20 + n2T2�10�20 − T3�10�20 − T3z�− + n1T2�10�− − T3�10�− + n2T2�20�− − T3�20�− − T3z�+

+ n1T2�10�+ − T3�10�+ + n2T2�20�+ − T3�20�+ + 2T2�−�+ − T3�−�+� + G3�z��T2z�10�20 + T2z�10�− + T2z�20�− + T�10�20�−

− n1T�10�20�− − n2T�10�20�− + T2�10�20�− + T2z�10�+ + T2z�20�+ + T�10�20�+ − n1T�10�20�+ − n2T�10�20�+

+ T2�10�20�+ + T2z�−�+ − T�10�−�+ − n1T�10�−�+ + T2�10�−�+ − T�20�−�+ − n2T�20�−�+ + T2�20�−�+�

+ G4�z��− Tz�10�20�− − Tz�10�20�+ − Tz�10�−�+ − Tz�20�−�+ + n1�10�20�−�+ + n2�10�20�−�+ − T�10�20�−�+�

+ G5�z�z�10�20�−�+ = 0. �21�

Figure 4 shows the comparison between numerical simu-
lations and theoretical results for this model. The agreement
between simulations and analytical calculations is quite
good. The vertical lines indicate the position of the spectrum
of the model which is equal to ����= �n1−1����−�10�+ �n2
−1����−�20�+���−�+�+���−�−�. The parameters of the
model are indicated in the caption. It is worth noting that the
number of large eigenvalues of the two-layer hierarchical
model described by Eq. �18� is two �see also Fig. 4�. This is
the same number of a block model with two blocks, even if
the hierarchical is generated by three factors. This observa-
tion suggests that the difference between the two models can
be observed in the structure of the eigenvectors, rather than
from the difference in the eigenvalue spectrum.

To summarize the results presented in this section, we
note that when the factors are uncorrelated in time one can
find the spectrum of the model of the degenerate model by a
block diagonalization of the correlation matrix. Furthermore,
by solving the algebraic Eq. �8� one may obtain the noise

dressed spectral density. When the model is non degenerate
and the distribution of �i

�k� is known, one can apply the above
discussed strategy to obtain the spectral density numerically
starting from their numerical solution.

V. FACTOR MODELS WITH SINUSOIDAL FACTOR

Our method is also applicable when the factors are corre-
lated in time. To give a concrete example, let us consider a
model where the dynamics of the variables are described by
the equation

xi�t� = ��2sin��t + �i� + ��0��i�t� . �22�

The model described in Eq. �22� is the first approximation of
the dynamics of the level of expression of genes during cell
cycle as detected in microarray experiments �9–11�. In this

FIG. 4. Spectral density of a two-level hierarchical factor model.
The parameters are n1=100, n2=70, �=0.5, �1=0.2, �2=0.3, and
T=500. The gray area is based on the average over 1000 simula-
tions and the dashed line is the theoretical result. The vertical lines
indicate the position of the eigenvalues of the spectrum of the
model.
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case, the frequency � is related to the duration of the cell
cycle. Microarray experiments usually have a very small
number of time records compared with the number of vari-
ables �genes�. This fact leads to a heavy dressing of the cor-
relation matrix by noise, and hence a careful characterization

of the noise dressing might be even more important in this
case.

The equal time correlation coefficient of this model is
Cij =�2cos��i−� j� for i� j and Cii=1. Thus the correlation
matrix is

C =�
1 … �2cos��1 − � j� … �2cos��1 − �N�
… … … … …

�2cos��1 − � j� … 1 … �2cos�� j − �N�
… … … … …

�2cos��1 − �N� … �2cos�� j − �N� … 1
� . �23�

In Appendix B, we show that the distinct eigenvalues of C are three, specifically the spectrum is composed by �0=1−�2

with multiplicity N−2 and two large eigenvalues �±=1−�2+ �2

2 �N±��g��, where g	� j=1
N e2i�j. The theory of noise dressing of

this correlation matrix cannot be performed by following the lines we used in the previous sections for factor models which
are time uncorrelated, i.e., by using Eq. �8�. This is because variables x at different times are correlated, whereas Eq. �8� is
obtained with the assumption that �xi�t�xj�t���ens
�tt�. A way to solve this problem is to assume that �i is a random phase
distributed according to a uniform distribution in �0,2��. Thus, the ensemble average consists in an averaging over the
distribution of the phases and of the noise terms �i. In this case, the matrix C becomes the identity matrix and the ensemble

average of the product of two variables in two distinct instants of time can be written as �xi�t�xj�t���ens= C̄ijDtt�, where C̄
=IN and

D =�
1 … �2cos���t1 − tk�� … �2cos���t1 − tT��
… … … … …

�2cos���t1 − tk�� … 1 … �2cos���tj − tT��
… … … … …

�2cos���t1 − tT�� … �2cos���tj − tT�� … 1
� . �24�

The case of factorization of �xi�t�xj�t���ens in a variable
and time component is treated in Ref. �23�. Specifically, the
equation for the resolvent is in this case �cfr. Eqs. �21�–�23�
of Ref. �23��

G�z� = �
i=1

T
1

z − Q�z�di
, �25�

where Q�z� is the solution of the equations

Q�z� =
1

T
�
j=1

N
cj

1 − R�z�cj
, R�z� =

1

T
�
i=1

T
di

z − diQ�z�
. �26�

and cj, �j=1,… ,N� and di, �i=1,… ,T� are the eigenvalues

of C̄ and D, respectively. Because of the averaging proce-

dure, the eigenvalues of C̄ are cj =1 and the first equation in
Eq. �26� becomes

Q�z� =
N

T

1

1 − R�z�
. �27�

In Appendix B, we show how to diagonalize the D matrix
assuming that the sampling times t1 ,… , tT are equispaced,

i.e., tj − tj−1=�. The spectrum of D consists of two large ei-
genvalues

d1,2 = 1 − �2 +
�2

2
�T ±

sin �T�

sin ��
� , �28�

and T−2 eigenvalues equal to di= �1−�2�	d0, where i
=3,… ,T.

From Eq. �26�, one thus obtains the equation for Q�z�, that
is

Q4�z�d0d1d2T + Q3�z��− d0d1d2N + d0d1d2T − d0d1Tz

− d0d2Tz − d1d2Tz� + Q2�z��d0d1z + d0d2z − 2d1d2z

+ d0d1Nz + d0d2Nz + d1d2Nz − d0d1Tz − d0d2Tz + d0Tz2

+ d1Tz2 + d2Tz2� + Q�z��− 2d0z2 + d1z2 + d2z2 − d0Nz2

− d1Nz2 − d2Nz2 + d0Tz2 − Tz3� + Nz3 = 0. �29�

From the solutions of this fourth-order algebraic equation,
one can compute the resolvent G�z� by using Eq. �25� Figure
5 shows the comparison between numerical simulations and
theoretical results for this model. The parameters of the
model are indicated in the caption. The obtained results al-
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low one to quantitatively characterize the noise dressing of
the signal part of the spectrum of the factor model with a
sinusoidal factor and random phases.

VI. CONCLUSIONS

In conclusion, we have shown that the application of
RMT allows one to quantitatively solve the problem of the
modeling of the spectral density of eigenvalues of the corre-
lation matrix of a large class of factor models in the presence
of the statistical uncertainty due to the finiteness of the num-
ber of records of time series. This class includes factor mod-
els with factors uncorrelated in time or sinusoidally time
dependent factors with random phases. We have shown that a
careful modeling of the effects of statistical uncertainty re-
quires more than just the simple assumption that the compo-
nents of the correlation matrix which are orthogonal to the
eigenspace—associated with the largest eigenvalues—are
fully controlled by statistical uncertainty. In fact, it turns out
that the precise profile of both the low part of the spectral
density and the computed value of the largest eigenvalues are
related to the details of the considered factor model in a way
that can be precisely quantified.

Our results can be applied to the modeling of several sys-
tems belonging to many different disciplines including phys-
ics, information theory and communication, economics, fi-
nance, molecular biology, and in general to any study in
which factor models can constitute a good starting point for
modeling the simultaneous dynamics of many variables.

ACKNOWLEDGMENTS

Authors acknowledge support from the research Project
No. MIUR 449/97, “High frequency dynamics in financial
markets;” Project No. MIUR-FIRB RBNE01CW3M, “Cellu-
lar self-organizing nets and chaotic nonlinear dynamics to
model and control complex system;” and from the European
Union STREP Project No. 012911, “Human behavior
through dynamics of complex social networks: an interdisci-
plinary approach.”

APPENDIX A

For the eigenvalue spectrum, we derive the expression of
Eq. �20� the correlation matrix of a �two-layer� hierarchical
factor model described in Eq. �18�. In order to find the ei-
genvalues of the correlation matrix, we need to put equal to
zero the determinant

�
1 − � … �2 + �1

2 �2 … �2

… … … … … …
�2 + �1

2 … 1 − � �2 … �2

�2 … �2 1 − � … �2 + �2
2

… … … … … …
�2 … �2 �2 + �2

2 … 1 − �

� .

�A1�

The matrix is block diagonal and the determinant can be
computed by using the formula �19�

�A11 A12

A21 A22
� = �A22��A11 − A12A22

−1A21� . �A2�

In order to compute A22
−1, we note that A22 is of the form

aIn2
+bJn2n2

, where In2
is the n2�n2 identity matrix and Jn2n2

is the n2�n2 unit matrix �i.e. a matrix consisting of all ones�.
Moreover a=1−�−�2−�2

2 and b=�2+�2
2. The matrices of

this type have the properties

det�aIn + bJnn� = an−1�a + bn� , �A3�

�aIn + bJnn�−1 =
1

a
�In −

b

a + bn
Jnn� , �A4�

and they are closed under sum �i.e. �aIn+bJnn�+ �a�In

+b�Jnn�= �cIn+dJnn��. The off diagonal matrices in the de-
terminant �A1� are A12=�2Jn1n2

and A21=�2Jn2n1
, where Jmn

is a m�n matrix consisting of all 1s. The Jmn matrices form
a closed algebra under multiplication, for example JnmJmp
=mJnp. These properties allow to conclude that both
A12A22

−1A21 and A11−A12A22
−1A21 are of the form aIn1

+bJn1n1
. It is therefore possible to calculate explicitly the two

determinants in the right side of Eq. �A2�. The direct appli-
cation of Eq. �A3� allows to find the determinant �A1� and,
by solving the characteristic equation, to find the eigenvalues
of Eq. �20�.

APPENDIX B

In this appendix, we find the eigenvalues of the C and D
matrices �Eqs. �23� and �24�� of the random phase model.

1. C matrix

The matrix C−�IN, whose determinant serves to find the
eigenvalues of Eq. �23�, can be rewritten as

�1 − � − �2�IN + u � vT + v � uT, �B1�

where uT=� /�2�ei�1 ,… ,ei�N� and v is the complex conju-
gate of u. We call A= �1−�−�2�IN+u�vT and we make use

FIG. 5. Spectral density of the one-factor model in with a sinu-
soidal factor described by Eq. �22�. The parameters are N=100, T
=500, �=0.5, �=1, �=1, and the phase � is distributed uniformly
between 0 and 2�. The dashed line is the analytical result based on
the RMT.
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of the Sherman–Morrison formula for determinants

�A + v � u�T = �A��1 + vTA−1u� . �B2�

Also, the determinant and the inverse of the matrix A can be
computed by using the Sherman–Morrison formula for deter-
minants Eq. �B2� and for inverse

�A + u � vT�−1 = A−1 −
�A−1u� � �vA−1�

1 + vTA−1u
. �B3�

The direct application of these formulas gives

�A� = �1 − � − �2�n�1 +
�2n

2�1 − � − �2�
 , �B4�

A−1 =
IN

1 − � − �2 −

u � vT

�1 − � − �2�2

1 +
�2n

2�1 − � − �2�

. �B5�

By substituting these expression in Eq. �B2�, we obtain for
�C−�IN� the expression

�1 − � − �2�N−2

4
��2�1 − � − �2� + �2N�2 − �4�g�2� , �B6�

where the complex function g is

g 	 �
j=1

N

e2i�j =
2

�2uTu . �B7�

By putting Eq. �B6� equal to zero, we find the eigenvalues of
C that is composed by two large eigenvalues

�± = 1 − �2 +
�2

2
�N ± �g�� , �B8�

and one eigenvalue �0=1−�2 with multiplicity N−2.

The remaining task is to calculate the parameter g of Eq.
�B7�. Its absolute value is given by

�g� = �N + �
i�j

e2i��j−�i�. �B9�

If the � j are uniformly distributed in �0,2��, the second term
in the square root vanishes so that �g�=�N and

�± = 1 − �2 +
�2

2
�N ± �N� . �B10�

2. D matrix

The matrix D in Eq. �24� is a special case of the matrix C
of Eq. �23� where � j =�tj, �j=1,… ,T�. Suppose that the
sampling times t1 ,… , tT are equispaced, i.e., tj − tj−1=�. In
this case, one can write tj = �j−1�� and the g parameter of Eq.
�B7� is

g = �
j=1

T

e2i�tj = �
j=1

T

e2i���j−1� =
1 − e2i��T

1 − e2i�� , �B11�

and therefore

�g�2 =
sin2�T�

sin2��
. �B12�

From the proof in the previous subsection, we conclude that
the spectrum of D consists of two large eigenvalues

d1,2 = 1 − �2 +
�2

2
�T ±

sin �T�

sin ��
� , �B13�

and T−2 eigenvalues equal to di= �1−�2�	d0, where
i=3,… ,T.

�1� J. Wishart, Biometrika A20, 32 �1928�.
�2� P. J. Forrester, and T. D. Hughes, J. Math. Phys. 35, 6736

�1994�.
�3� Y. Demasure, and R. A. Janik, Phys. Lett. B 553, 105 �2003�.
�4� A. L. Moustakas et al., Science 287, 287 �2000�.
�5� J. Tworzydlo, and C. W. J. Beenakker, Phys. Rev. Lett. 89,

043902 �2002�.
�6� S. E. Skipetrov, Phys. Rev. E 67, 036621 �2003�.
�7� J. Kwapien, S. Drozdz, and A. A. Ioannides, Phys. Rev. E 62,

5557 �2000�.
�8� P. Seba, Phys. Rev. Lett. 91, 198104 �2003�.
�9� N. S. Holter et al., Proc. Natl. Acad. Sci. U.S.A. 97, 8409

�2000�.
�10� O. Alter, P. O. Brown, and D. Botstein, Proc. Natl. Acad. Sci.

U.S.A. 97, 10101 �2000�.
�11� N. S. Holter et al., Proc. Natl. Acad. Sci. U.S.A. 98, 1693

�2001�.
�12� L. Laloux et al., Phys. Rev. Lett. 83, 1467 �1999�.
�13� V. Plerou et al., Phys. Rev. Lett. 83, 1471 �1999�.
�14� S. Maslov, and Y.-C. Zhang, Phys. Rev. Lett. 87, 248701

�2001�.

�15� S. Pafka, and I. Kondor, Eur. Phys. J. B 27, 277 �2002�.
�16� J. Kwapien et al., Physica A 309, 171 �2002�.
�17� Y. Malevergne, and D. Sornette, Physica A 331, 660 �2004�.
�18� Z. Burda et al., Physica A 343, 295 �2004�.
�19� K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analy-

sis �Academic, San Diego, 1979�.
�20� M. R. Anderberg, Cluster Analysis for Applications �Aca-

demic, New York, 1973�.
�21� Y. J. Campbell, A. W. Lo, and A. C. Mackinlay, The Econo-

metrics of Financial Markets �Princeton University Press,
Princeton, New Jersey, 1997�.

�22� M. Metha, Random Matrices �Academic, New York, 1995�.
�23� A. M. Sengupta, and P. P. Mitra, Phys. Rev. E 60, 3389 �1999�.
�24� L. Denby, and C. L. Mallows, Computing Sciences and Statis-

tics: Proceedings of the 23rd Symposium on the Interface, ed-
ited by E. M. Keramidas, �Interface Foundation, Fairfax Sta-
tion, VA, 1991�, pp.54–57.

�25� A. Soshnikov, J. Stat. Phys. 108, 1033 �2002�.
�26� W. H. Press et al., Numerical Recipes �Cambridge University

Press, Cambridge, U.K, 1992�.
�27� J. D. Noh, Phys. Rev. E 61, 5981 �2000�.

F. LILLO AND R. N. MANTEGNA PHYSICAL REVIEW E 72, 016219 �2005�

016219-10


